1. PyPontem ppl parsing
- Functions:
-
-
metadata: to extract metadata from a ppl file
-
branch_names: to extract branch names from a ppl file
-
branch_profiles: to extract branch profile information from a ppl file
-
parse_number_of_variables: to extract the number of variables present in a ppl file
-
extract_catalog: to extract the catalog information from a ppl file
-
search_catalog: to extract the information from the catalog of the variable specified
-
extract_profile: to extract profiles in a ppl file
-
extract_profiles_join_nodes: to join nodes of the profiles extracted from a ppl file
-
-
metadata:
metadata(Args = None) -
Extracts metadata from the content stored in the object and returns it as a pandas DataFrame.
- Arguments:
-
-
None
-
- Returns:
-
-
metadata (pd.DataFrame): A DataFrame containing the extracted metadata with keys as column headers
-
-
branch_names:
branch_names(Args = None) -
Extracts and prints the names of all branches in the given ppl file.
- Arguments:
-
-
None.
-
- Returns:
-
-
branch_names (list): A list of extracted branch names as strings.
-
-
branch_profiles:
branch_profiles(target_branch = None) -
Extracts and displays elevation for a specific branch or all branches in the file.
- Arguments:
-
-
target_branch (str, optional): The specific branch to display data for. Defaults to None.
-
- Returns:
-
-
branch_profiles (dictionary): A dictionary containing the profiles of the specified branch or all the branches if none specified.
-
-
n_vars:
n_vars(Args = None) -
Parses the number of variables from a given file path.
- Arguments:
-
-
None
-
- Returns:
-
-
n_vars (int): The number of variables if found, else None.
-
-
catalog:
catalog(Args = None) -
Extract variable information from the provided content using a regular expression pattern.
- Arguments:
-
-
None.
-
- Returns:
-
-
returned_catalog (pd.DataFrame): A DataFrame containing all the catalog information available in the ppl file.
-
-
search_catalog:
search_catalog(var_name=None, loc_name=None, pipe_name=None) -
Searches for variables containing a keyword in their names within a DataFrame.
- Arguments:
-
-
var_name (str): The variable name
-
loc_name (str): The location of the variable you want to search for
-
pipe_name (str): The pipe name of the variable name specified located at the location
-
- Returns:
-
-
searched_catalog (pd.DataFrame): A dataframe containing catalog information of the variable specified at the location and pipe name provided.
-
-
extract_profile:
extract_profile(input_matrix: pd.DataFrame) -
Extracts and processes profile data from an input matrix, performing unit conversions and time filtering.
- Arguments:
-
-
input_matrix (pd.DataFrame): The matrix containing input data, including variable names, branches, units, and time specifications. Click to view the input matrix template. This is a required argument.
-
- Returns:
-
-
profiles (pd.DataFrame): A combined DataFrame containing the processed profile data with converted units and filtered time ranges.
-
-
extract_profiles_join_nodes:
extract_profiles_join_nodes(input_matrix: pd.DataFrame, branch_matrix: pd.DataFrame) -
Extracts and processes profile data for branches, combining boundary and section data.
- Arguments:
-
-
input_matrix (pd.DataFrame): The matrix containing information for various branches with columns [‘branchname’, ‘varname’, ‘out_unit’, ‘out_unit_profile’, ‘time_unit’]. Click to view the input matrix template. This is a required argument.
-
branch_matrix (pd.DataFrame): The matrix containing information about branch connections with columns [‘branch_in’, ‘branch_out’].
-
- Returns:
-
-
joined_profiles (pd.DataFrame): A combined DataFrame containing processed profile data for the specified branches, including boundary and section data, with consistent units and profiles.
-
-
pplBatchParser: A class to handle batch processing of ppl files
Note that: ppl batch parsing functionality only works for files of the same batch of simulations with the same branch names and structure, otherwise this will raise an error.
- Functions:
-
-
extract_profiles: To extract profiles from a list of ppl files
-
join_batch_nodes: To join nodes of branches extracted from a list of ppl files
-
-
extract_profiles:
extract_profiles(input_matrix: pd.DataFrame) -
Function to extract profiles from a batch of ppl files
- Arguments:
-
-
Input_matrix (pd.DataFrame): The matrix containing variable names, branch names, and pipe names. Click to view the Input matrix template. This is a required argument.
-
- Returns
-
-
batch_profiles (pd.DataFrame): DataFrame containing extracted profiles from ppl files
-
-
join_batch_nodes:
join_batch_nodes(input_matrix: pd.DataFrame, branch_matrix: pd.DataFrame) -
Extracts and processes profile data for branches, combining boundary and section data from a list of ppl files.
- Arguments:
-
-
input_matrix (pd.DataFrame): The matrix containing information for various branches with columns [‘branchname’, ‘varname’, ‘out_unit’, ‘out_unit_profile’, ‘time_unit’]. Click to view the Input matrix template. This is arequired argument
-
branch_matrix (pd.DataFrame): The matrix containing information about branch connections with columns [‘branch_in’, ‘branch_out’].
-
- Returns:
-
-
joined_nodes (pd.DataFrame): A combined DataFrame containing processed profile data for the specified branches, including boundary and section data, with consistent units and profiles.
-